- behavior of geodesic
- мат.поведение геодезической (линии)
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Riemannian geometry — Elliptic geometry is also sometimes called Riemannian geometry. Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric , i.e. with an inner product on the tangent… … Wikipedia
Congruence (general relativity) — In general relativity, a congruence (more properly, a congruence of curves) is the set of integral curves of a (nowhere vanishing) vector field in a four dimensional Lorentzian manifold which is interpreted physically as a model of spacetime.… … Wikipedia
Ergodic theory — is a branch of mathematics that studies dynamical systems with an invariant measure and related problems. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical … Wikipedia
Fullerene — Buckminsterfullerene C60 (left) and carbon nanotubes (right) are two examples of structures in the fullerene family … Wikipedia
Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this … Wikipedia
Newtonian motivations for general relativity — Some of the basic concepts of General Relativity can be outlined outside the relativistic domain. In particular, the idea that mass/energy generates curvature in space and that curvature affects the motion of masses can be illustrated in a… … Wikipedia
Jacobi field — In Riemannian geometry, a Jacobi field is a vector field along a geodesic gamma in a Riemannian manifold describing the difference between the geodesic and an infinitesimally close geodesic. In other words, the Jacobi fields along a geodesic form … Wikipedia
Geodesics as Hamiltonian flows — In mathematics, the geodesic equations are second order non linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first order equations … Wikipedia
Introduction to general relativity — General relativity (GR) is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by… … Wikipedia
Nordström's theory of gravitation — In theoretical physics, Nordström s theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913… … Wikipedia
Philosophy of space and time — is the branch of philosophy concerned with the issues surrounding the ontology, epistemology, and character of space and time. While such ideas have been central to philosophy from its inception, the philosophy of space and time was both an… … Wikipedia